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Until recently open flows were almost exclusively investigated in the theory of hydrodyna- 
mic stability. As regards closed flows, the motion of a fluid between rotating cylinders 
(Taylor’s problem) had been the subject of the most detailed analysis. That flow is not, 
however, a typical example of closed flows in which the loss of stability is entirely differ- 
ent [I]. The motion of a fluid between rotating spherical surfaces may be taken as the most 
typical example. Such motion between an inner sphere of radius rr, rotating at an angular 
velocity inside a stationary outer sphere of radius rl was analyzed in paper [d. 

The behavior of three separate perturbations at small Reynolds numbers and rl/rt I a = 
= 2 were investigated. However, the knowledge of a wider spectrum of normal perturbations 
in the whole range of Reynolds numbers is required for the derivation of the nonlinear theory 
of stability. In the present paper, expansions of normal perturbations, and of their decre- 
ments into power series of R are derived and analyzed. It is shown that both monotonous 
(with real decremental, and oscillatory (with imaginary decrements) perturbations are possi- 
ble in this problem. Generation of complex perturbations occurs at a certain critical value 
R+ # 0. Decrement corrections were computed at slow rotation by the perturbation method 
for a = 2.5, 2.0, 1.7. 

1. Basic 1 am in at f 1 o w. As units of measurement of the radius, velocity, and pres- 
sure we take respectively rl, V/rIr pVaJrIz , where p is the density, and v the kinematic vis- 
cosity of the fluid. The equations of stationary motion are 

(UV) u = -VP-rot rot u, div U = 0 (1.11 

with boundary conditions (rc is the unit vector) 

U Is, = Rn x ro, Uls, =o (R=T) (1.2) 

Here, R is the Re olds number. For small Reynolds numbers the solution may be sought 
in the form of series 31 P 

u = RUr + RW, +..., (1.3) 
Function U, is given in 141, while U, 

P = RP, + RePz +... 

cal vector functions [ 53. 
was found by Dratukhin [21 with the use of spheri- 

Ul = cp (r) n >: r, cp(r)=&$-I) 

Ur = F (r) ~OYZ + G (r) rVYa (Y2 =‘/*(3cos26- 1)) (1.41 

as 1 
F = :!(a8- 1)a yc i 

-$+r+c4ra+g+$+$-r7], G = & (rap) 

Coefficients ct , c2, 5, c, are defined by the boundary conditions (1.21. Streamlines of 
the secondary flow are given in [Z]. F or a= 2 the amplitude of U 
by approximately two orders of magnitude. This ratio increases w en o -+ 1, and decreases a 

is smaller than that of U, 

for higher values of a. 
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2. Perturbations in a stationary spherical layer.Equations of normal 
perturbations in a stationary fluid are [I] 

- h&Jo -1. vp + rot rot @.I0 = 0, div ug = 0, h I,, s1 == !I (2.1) 

Eqs. (2.1) are self-adjoint, due to all h being real. It is easy to show [I] that they are 
also positive. Therefore, all perturbations in a stationary fluid decay monotonously. It is 

functions 12 and $ 
convenien to loo for the expression of I+, in the form of an expansion of spherical vector 

‘tt@ = f (r) r*Y + g fr) rvY + h (1”) r x v y, p = 4 (4 Y (2.2) 

Here, Y E Y, (6) = Pl (~0s tt) are Legendre spherical functions. In a stationary spher 
ical layer there are two types of perturbations: azimuthal 

PO = h(rfr x VY (2.3) 
when fluid particles do not move out of their layer, and meridional 

VI = f (r) xoY + g (r) r V Y (2.4) 
when particles have no azimuthal velocity components. Functions f, g, h are expressed in 
terms of Bessel’s functions of the first kind of half-integer index, and are given in [2]. For 
the determination of decrements po we obtain Eq.(*) 

(Decrement corrections are shown with a factor of 10’) 

Eqnations (2.5) and (2.6).yield for each 1 an infinite sequence of decramants V& and 

cc(O :r 
k 

witb i = 1, 2 ,...; l= 1, 2 ,... 

qs. (2.5) and (2.6) were solved numerically. Values of twenty lower dacremants for 
o = 2.5, 2.0, 1.7 are shown in the Table above. 

l Bratukhin 1n.K. Dissertation, Penn’ university, 1%2. 
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It is interesting to examine the decrement behavior at large values of a, as well as for 
a close to unity. For simplicity’s sake we shall consider the minimal roots of Eqs. (2.5) 
and (2.61 for 1 = 1. 

A. For large values of o Eqs. (2.5) and (2.61 may be expressed respectively by 

x = tg 2, x= fia 

t 
I x 

--- 
X 

3 tgx=i, 
1 

x= 

(2.7) 

VGOU (2.8) 

(2.91 

From (2.7) and (2.8) we easily establish that 
9x2 It2 

lJo=- 9 yo =: m 

Thus, for large values of o the decrements of azimuthal , 
than those of meridional perturbations vo. 

perturbations pa will be greater 
It follows from Eqs. (2.8) and (2.9) that for large 

values of a decrements po and ho tend to zero as l/a2. 
B. For (I close to unity Eqs. (2.5) and (2.61 may be expressed respectively by 

sin (fi ha) = 0, 6a=a-1 (2.101 

ljpx sinx+cos x=1, x- fi6a (2.11) 

Roots of these Eqs. are easily determined 
rc2 2 

bLo==(6a)2* V”+$ 
(2.12) 

which means that with a + 1 the decrements increase as l/@a12, with decrements vo siru- 
ated about four times higher than the F(,-, -decrements. This feature may be readily observed 
in the Table. As was shown in a general manner in [2], decrements po increase monotonous- 
ly with the increase of number I. It is not possible to establish in a generalized form the 
behavior of decrements vu in terms of changing I, but numerical computations show that 
these decrements have a minimum value (see Table) at a certain 1, and that with increasing 
a this minimum is reached at smaller values of the I-number. It is obvious that, commencing 
from a certain value of a, the Vo - 
ging 1. 

and /+decrements will behave monotonously with chang- 

3. Perturbations in a slowly rotating spherical layer. Perturbations in 
a rotating fluid satisfy Eqs. [ 1] 

--hu -I- Vp -I- rot rot u = - [(UV)U -I- (uV) U] div u = 0, uL? = 0 (3.11 
with normalization condition 

I * vg*u,dV = I!$, 

where V is the solution of the conjugate problem. 
We look for the solution in the form of a power series of R 

u = ug + u,R + u,R2 + . . . . h = ho + A,R + 5,R2 + . . . (3.2) 
From the symmetry problem with respect to changes of the sense of rotation it immediate- 

ly follows that all coefficients of odd powers of R in the decrement expansion (3.2) are 
zeros. Real expansions (3.2) are valid up to the singular point. All u,, and A, may be deter- 
mined by successive approximations. It is convenient to do this by means of the perturba- 
tion method, expanding u,, into series of the basic system of functions of the unperturbed 
problem (2.1). At slow rotation the perturbations cease to be purely azimuthal, or meridion- 
al, due to the operator iu the right-hand side of (3.1). W e shall, however, consider p- and V- 
perturbations, and track their decrements up to R = 0. It will be readily seen that there ex- 
ist for the perturbations and their decrements power series of R as follows: 

(3.31 
m. k 

For quadratic corrections of decrements we obtain Formulas 

(3.41 
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Integrals y: and K’* are derived from the integrals of (3.5) by a substitution in the in- 
tegrands of vco,s for ,u’f;, and vice versa. 
to unperturbed levels. b 

Summation in (3.4) is carried out with respect 
ue to the reciprocal ortho onality of spherical vectorial functions, 

integrals Hii and Xkks differ from zero for m - n I ‘I= 1 only. This “selection rule” make5 
computations considerably easier, reducing the summation of (3.4) to practically a single 
one. The computation of integrals (3.5) was carried out on an ‘Argats’ electronic computer 
at the Computing Center of the Pew’ University. The first two terms of decrement expan- 
sion (3.3) computed from Eqs. (2.5) and (2.6) with the aid of Formulas (3.4) are shown in 
the Table. 

Corrections of decrements /J tl, utt , v2 1 had been computed in paper [2]. Values of cor- 

rections given in [2] do not coincide with the corresponding values shown in the Table, and 
corrections v(x)2 ’ and ,r+zyt t differ also as to their si s. This lack of correlation may pos- 

sibly be due to a lower accuracy of computations in [ 7 . 

4. Decrement intersection in a spherical cavity. Due to the boundary val- 
ue problem (3.1) not being self-adjoint, the real expansions (3.2) are only valid up to the 
singular point R,; complex decrements appear in the h-spectrum for R > R*, which indicates 
the onset of oscillatory perturbations of a frequency o = Im (h). This peculiarity had already 
been brought to light in a number of problems (see, for exampIe, [7 to 91). 

We shall derive the condition necessary for the onset of oscillatory perturbations. The 
conjugate perturbation Eqs. have the form [l] 

-?l,h*v+Vq+rot rotv-(uV)v+P(Uv)=n 

div v = 0, v, = 0 (4.1) 

Solutions of the basic (3.1), and of the conjugate (4.1) problems may be divided into azi- 
muthal, (cl), and meridional (v) parts 

u- u p + oy, v : Vi” !-- V” (4.2) 

Multiplying (3.1) in turn by V 

volume of the cavity, we obtain Y 
and V,, and (4.11 by I$ and u,, and integrating over the 

our integral relationships, from which we derive 

(A* - h) I = (?v* - h) \ (u,v, - uI*vp,) dV : 0 (4.3) 

The condition necessary for the appearsncl of oscillatory perturbations (A* # A) is the 
vanishing of integral f in (4.g. As long as expansions (3.2) hold, the decrements a* = h) 
are real, with integral I differing from zero, and having different signs for the p-, and Y- 
perturbations. In fact, for R = 0 we have i = + 1 for the v-perturbations, and for the p-per- 
turbations I = - 1. Inte al I can on1 
the merger of two real ecrements t 8r al: 

vanish at the finite Reynolds number R*. For R = Rz 
es place, while for R > R* these decrements are trans- 

formed into a pair of complex conjugate decrements, In order to elucidate the behavior in 
the singular point nei hborhood the approximate method, used in the analysis of molecular 
therms intersection a8 , Section. 791 may be resorted to. This method had already been used gl 
for simifar purposes in papers 17 and 81. 

We introduce in (3.1) the notation 

II (R) u ^ (UO) u + (UT) u (4.41 

and write down (4.41 for point R = R, + 6R at which 

H (R) = N(R,) -I- (~H/~R)R,~R (4.5) 
Let two reaI decrements x t and A, be close to each other at point &, . We denote by u1 

and u2 the solutions corresponding to h, and A,, and by v1 and V? their conjugate solutions. 
We shall look for solution u in the form 

u = ci ui i- cati* (4.61 
Substituting Expressions (4.5) and (4.6) into (3.11, multiplying by vl* and v 2 *, and inte- 

grating over the cavity volume, we obtain for c1 and cz a system of homogeneous linear equa- 
tions. 

Decrements in the neighborhood of Ru may be derived from the compatibility condition of 
this system 
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h = r/z [hr + AZ + (VII + Fza) 6Rl f 

f- V/, [hl + hz + (Vu - Vss) 6Rlr + Vd’zl (W2 (4.71 

Here 

vm,-_S”~*j~)undV (4.8) 

Magnitude I’,,,, depends on the spatial symmetry of perturbations. Expsnsions (3.2) 
show that the p- and v-perturbations have different reflection properties in the equatorial 
plane. These properties of symmetry are independent of the number of expansion terms. d 

remain such for any R. It is readily seen that the,#-perturba- 
tions are symmetric for odd values of 1, and antisymmetric 
for even values of the latter. At the same time, the r+-pertur- 
bations will be symmetric for even values of 1, ad antisym- 
metric when the latter are odd. Matrix elements F 

“ft ~3ie~ turbations of different symmetry are equal to zero. 
seen from Formula (4.7) that for any Ro the identity conver- 
sion of 
tion of ;P 

roduct VI V t to zero leads to a simple intersec- 
randAl.% t UC intersections without the occurance 

of singular points are possible between p-perturbation dec 
rements for A I = &l, f g,..., between v-perturbation decre- 
ments for AL = fl, &,..., and also at intersections of the 
p- and V-perturbations decrements when AL = &2, f4,.... 
For perturbations of like symmetry the matrix elements dif- 
fer from zero. 

It is not possible to determine in a generalized form the 
value and the sign of product V,, V,t , due to the basic flow 
having been defined with an approximation of the order of R 2 
only. An intersection of decrements is not possible when 
VI2 V,,> 0, while with Vi2 V2t < 0 and perturbations of like 
symmetry, but of different kind, merging of two real decre- 
ments accompanied by the formation of a pair of complex ad- 
joints may occur. 

The spectrum of lower decrements for a = 2 is shown in 
Fig. 1, where the p-perturbation decrements are seen to de- 
crease (with the exception of decrement /tl t), while those of 
the v-perturbations increaee. The same behavior is also ob- 
served in the case of a = 2.5 (see Table). For a = 1.7 the 
smallest decrement (/..tt 1) decreases. A great number of the 
,U -perturbation decrements lies between the smallest p - and 
v-perturbation decrements, and the smaller the value of a, 
the greater their number. 

All these perturbations remain monotonous, as long as the 
sign of integral I in their expressions is the same. It may, 
therefore, be reasonably assumed that in the flow defined by 
(1.1) a monotonous, rather than an oscillatory instability is 
more likely to occur (if altogether instability takes place). 
Caution must be exercised in the evaluation orf $e critical _ _ _ . 
Reynolds number in the way this was done in I2J, because in 
the extrapolation up to X- 0 no account was t&en of the “de- 
crement interaction*‘, and all intersections were assumed to 
be simple. 

Fig. 1 
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